176 research outputs found

    Non-local observables at finite temperature in AdS/CFT

    Full text link
    Within gauge/gravity duality, we consider the AdS-Schwarzschild metric in arbitrary dimensions. We obtain analytical closed-form results for the two-point function, Wilson loop and entanglement entropy for strip geometries in the finite-temperature field-theory dual. According to the duality, these are given by the area of minimal surfaces of different dimension in the gravity background. Our analytical results involve generalised hypergeometric functions. We show that they reproduce known numerical results to great accuracy. Our results allow to identify new physical behaviour: For instance, we consider the entanglement density, i.e. the difference of entanglement entropies at finite and vanishing temperature divided by the volume of the entangling region. For field theories of dimension seven or higher, we find that the entanglement density displays non-monotonic behaviour as function of l*T, with l the strip width and T the temperature. This implies that the area theorem, proven for RG flows in general dimensions, does not apply here. This may signal the emergence of new degrees of freedom for AdS Schwarzschild black holes in eight or more dimensions.Comment: 42 pages + appendi

    Isospin diffusion in thermal AdS/CFT with flavor

    Full text link
    We study the gauge/gravity dual of a finite temperature field theory at finite isospin chemical potential by considering a probe of two coincident D7-branes embedded in the AdS-Schwarzschild black hole background. The isospin chemical potential is obtained by giving a vev to the time component of the non-Abelian gauge field on the brane. The fluctuations of the non-Abelian gauge field on the brane are dual to the SU(2) flavor current in the field theory. For the embedding corresponding to vanishing quark mass, we calculate all Green functions corresponding to the components of the flavor current correlator. We discuss the physical properties of these Green functions, which go beyond linear response theory. In particular, we show that the isospin chemical potential leads to a frequency-dependent isospin diffusion coefficient.Comment: 26 pages, 8 figures, typos correcte

    Holographic heavy-light mesons from non-Abelian DBI

    Full text link
    In the context of gauge/gravity duals with flavor, we examine heavy-light mesons which involve a heavy and a light quark. For this purpose we embed two D7 brane probes at different positions into the gravity background. We establish the non-Abelian Dirac-Born-Infeld (DBI) action for these probes, in which the U(2) matrix describing the embedding is diagonal. The fluctuations of the brane probes correspond to the mesons. In particular, the off-diagonal elements of the U(2) fluctuation matrix correspond to the heavy-light mesons, while the diagonal elements correspond to the light-light and heavy-heavy mesons, respectively. The heavy-light mesons scale differently with the 't Hooft coupling than the mesons involving quarks of equal mass. The model describes both scalar and vector mesons. For different dilaton-deformed gravity backgrounds, we also calculate the Wilson loop energy, and compare with the meson masses.Comment: 21 pages, 7 figure

    Holographic entanglement entropy of semi-local quantum liquids

    Get PDF
    We consider the holographic entanglement entropy of (d+2)(d+2)-dimensional semi-local quantum liquids, for which the dual gravity background in the deep interior is AdS2×RdAdS_{2}\times\mathbb{R}^{d} multiplied by a warp factor which depends on the radial coordinate. The entropy density of this geometry goes to zero in the extremal limit. The thermodynamics associated with this semi-local background is discussed via dimensional analysis and scaling arguments. For the case of an asymptotically AdS UV completion of this geometry, we show that the entanglement entropy of a strip and an annulus exhibits a phase transition as a typical length of the different shapes is varied, while there is no sign of such a transition for the entanglement entropy of a sphere. Moreover, for the spherical entangling region, the leading order contribution to the entanglement entropy in the IR is calculated analytically. It exhibits an area law behaviour and agrees with the numerical result.Comment: 33 pages, 24 figure

    Information geometry in quantum field theory: lessons from simple examples

    Get PDF
    Motivated by the increasing connections between information theory and high-energy physics, particularly in the context of the AdS/CFT correspondence, we explore the information geometry associated to a variety of simple systems. By studying their Fisher metrics, we derive some general lessons that may have important implications for the application of information geometry in holography. We begin by demonstrating that the symmetries of the physical theory under study play a strong role in the resulting geometry, and that the appearance of an AdS metric is a relatively general feature. We then investigate what information the Fisher metric retains about the physics of the underlying theory by studying the geometry for both the classical 2d Ising model and the corresponding 1d free fermion theory, and find that the curvature diverges precisely at the phase transition on both sides. We discuss the differences that result from placing a metric on the space of theories vs. states, using the example of coherent free fermion states. We compare the latter to the metric on the space of coherent free boson states and show that in both cases the metric is determined by the symmetries of the corresponding density matrix. We also clarify some misconceptions in the literature pertaining to different notions of flatness associated to metric and non-metric connections, with implications for how one interprets the curvature of the geometry. Our results indicate that in general, caution is needed when connecting the AdS geometry arising from certain models with the AdS/CFT correspondence, and seek to provide a useful collection of guidelines for future progress in this exciting area.Comment: 36 pages, 2 figures; added new section and appendix, miscellaneous improvement

    Bending branes for DCFT in two dimensions

    Full text link
    We consider a holographic dual model for defect conformal field theories (DCFT) in which we include the backreaction of the defect on the dual geometry. In particular, we consider a dual gravity system in which a two-dimensional hypersurface with matter fields, the brane, is embedded into a three-dimensional asymptotically Anti-de Sitter spacetime. Motivated by recent proposals for holographic duals of boundary conformal field theories (BCFT), we assume the geometry of the brane to be determined by Israel junction conditions. We show that these conditions are intimately related to the energy conditions for the brane matter fields, and explain how these energy conditions constrain the possible geometries. This has implications for the holographic entanglement entropy in particular. Moreover, we give exact analytical solutions for the case where the matter content of the brane is a perfect fluid, which in a particular case corresponds to a free massless scalar field. Finally, we describe how our results may be particularly useful for extending a recent proposal for a holographic Kondo model.Comment: 35 pages + appendices, 12 figures, v2: added references and a paragraph on negative tension solutions, v3: updated reference
    • …
    corecore